
CASE STUDY

Software Quality and Its Entanglements in Practice
JULIA PRIOR, University of Technology Sydney
JOHN LEANEY, University of Technology Sydney

Effective software quality assurance in large-scale, complex software systems is one of the most vexed issues in
software engineering, and, it is becoming ever more challenging. Software quality and its assurance is part of
software development practice, a messy, complicated and constantly shifting human endeavor.

What emerged from our immersive study in a large Australian software development company is that
software quality in practice is inextricably entangled with the phenomena of productivity, time, infrastructure
and human practice. This ethnographic insight --- made visible to the organization and its developers via the
rich picture and the concept of entanglements--- built their trust in our work and expertise. This led to us
being invited to work with the software development teams on areas for change and improvement and moving
to a participatory and leading role in organizational change.

Keywords: ethnography, entanglements, rich_pictures, software_development

INTRODUCTION AND CONTEXT

Effective software quality assurance in large-scale, complex software systems is one of
the most vexed issues in software engineering. Today’s software systems provide
sophisticated functionality that was not even imaginable a couple of decades ago – and
assuring quality in these increasingly capabable, adaptive and connected systems is becoming
ever more challenging (Mistrik et al. 2016). Software quality and its assurance is part of
software development practice – a messy, complicated and constantly shifting human
endeavor.

We were drawn to the participant organization – a software development company – as
a fascinating and promising place to explore challenges in quality assurance through the lived
experience of professional software developers. Its flagship software product, Connect (a
pseudonym), is an extraordinarily large and complex software system used by thousands of
customers in dozens of countries across the globe. The organization’s profound knowledge
and experience in the industry it has served for over two decades, and a continual
development approach, ensures that Connect’s functionality becomes more and more
advanced every year.

At the time of the fieldwork, there were just over two hundred software developers
working collaboratively in a dozen software product development teams. They were based
primarily in the head office in Australia, with most responsible for different modules of
functionality in Connect, and a couple of smaller teams developing separate products that
interacted directly with Connect.

Keeping Connect performing reliably for its tens of thousands of users necessitates
robust software development, quality assurance and work management processes. The
company has developed a high quality ethic around its development of software over many
years. This has come about by the continuing discussions around quality and productivity

2020 EPIC Proceedings pp. 163–176, ISSN 1559-8918, https://www.epicpeople.org/epic

Ethnographic Praxis in Industry Conference

Software Quality and Its Entanglements – Prior & Leaney 164

that permeate all teams. The quality assurance processes it has in place make for an
extremely robust product that is recognised as such by the industry that it serves (Prior
2011). Nonetheless, challenges to the reliability of these quality processes were posed by the
consistent growth of both Connect and the number of new developers unfamiliar with the
organization and its complex systems, processes and practices.

This case study is based on the ethnographic work we carried out when the first author
spent a six-month sabbatical working full-time in the organization.

RICH PICTURES

As this is ethnographic work, there is of course thick, rich data. We needed to make

friends with all of this data, to manage and analyse it without becoming overwhelmed. It
became apparent as data was collected that some diagrammatic means of representing the
relationships discovered from analysis was important. For a large system, or complex
environment, diagrams “encourage holistic rather than reductionist thinking about a
situation” (Checkland 2000).

Rich pictures are compilations of drawings, pictures, symbols and text, that show
relationships, connections, influence, processes, as well as characters and characteristics,
points of view, prejudices and preferences.

We chose Checkland’s rich pictures as they are not hierarchical, can be used to extend
analysis via the Soft Systems Methodology (SSM) and both authors were familiar with the
SSM and had used it in the past. SSM shares similar theoretical underpinnings to an
ethnographic approach. The most notable one is the lack of belief in a universal theory, or
driving system, for an organization.

The rich pictures we created with developers proved particularly useful for:

• Exploring and identifying aspects and perspectives to include in mapping a system

or situation
• Capturing structure and process of what is happening in a situation, as well as

people’s feelings, values and perspectives
• Fostering communication with others about a situation
• Developing a shared understanding of a situation or initiative as a group
• Motivating further discussion, learning and/or action
• The unanticipated effect of the rich picture was the deeper engagement of the

developers with our work, which helped build their trust in us, and appreciation of
our research.

BUILDING A RICH PICTURE OF THE ORGANISATION

A Rich Picture

The first author started the rich picture by using Post-Its, as she could place and move

them around easily.

2020 EPIC Proceedings 165

This piece of the first,
rather rough, rich picture
represents activity around
the testing process: we see
a couple of new
developers writing some
unit tests and using the
automated test system,
DAT. We also see their
code going through a
couple of iterations to
improve quality. These
iterations are about the
code being refined, and
eventually the code being
checked into the code
database. In their
development process,
TestFirst is a fundamental
approach in which the tests are written before the functional code. It directs thinking
towards outcomes, and how they will be tested to demonstrate correctness.

Our observations were that the more experienced developers will talk about the essential
use of TestFirst – as a design approach, but also for investigating and fixing defects:

“Let's write the test first, and then see if we need to change the others [unit tests].”

In the picture, we see the developers performing tests, driven by quality needs. In
tension, they are also driven by the need for progress, as expressed by the Post-It labelled
‘check-in’s’. A check-in occurs when a developer uploads their final tested and peer-reviewed
new or revised code to the main codebase. One can also see the interactions with new and
trainee developers in the company, shown by the Post-Its, ‘sanity checks’, ‘grad criteria’ and
the redacted Post-It. A ‘sanity check’ is a brief run through of the functionality of the code
to establish that it works more or less as expected; ‘grad criteria’ refers to the set of measures
that a new developer must meet before they can graduate from, or complete, their
probationary training – these include a minimum number of check-in’s and sanity checks, for
example.

For many developers, these training interactions cause tension in achieving productivity,
as demonstrated by the following quote:

“All the senior devs. are already busy doing what they are working on at the
moment. It’s kind of like, they’ve got their work and they have to teach other
people at the same time. So the priority for senior dev. is, of course, their current
work.”

In summary, what we were seeing more clearly via the Rich Picture was an
understanding that was broader (more of the interactions within and between teams and the
influences on developers’ behavior) and deeper (more subtle interactions).

Figure 1. First rich picture composed of Post-its.

Software Quality and Its Entanglements – Prior & Leaney 166

A Richer Rich Picture

A couple of weeks later, the authors re-drew the rich picture as a solely hand-drawn
diagram. Even the small Post-It notes proved to be too large, and they didn’t allow for as
much flexibility or creativity as we wanted. Adding more connecting lines, colors, some
drawings, free-form shapes and labels helped us to build richness into the diagram.

In this version of the rich picture, there are more characters: developers who review
code for correctness, product managers who manage the requirements of the product being
developed and development teams. High level and low-level design processes are now
included, using the acronyms HLD and LLD. These acronyms are commonly used within
the company and also save space on the picture. We have been able to group items into
larger umbrella items, including Product Quality and Code Quality.We have added quotes to
the rich picture, representing the sort of attitudes and beliefs that are held by people in
various roles.

The tension around quality and productivity can be seen in the following quotes.

 “Code Reviews must be peer reviews done face to face”

Figure 2. Richer picture excerpt, hand drawn.

2020 EPIC Proceedings 167

is commenting on the tension between the effectiveness of code reviews as learning
experiences for improving code quality in tension with the time taken to do reviews.

 “Sanity Checks and Code Reviews are not just about checking the code, they are
opportunities to learn.”

This especially relates to new developers.
Near the bottom of this diagram, and the stick figure labelled Code Reviewers, and

linked to Unit Tests there is something that the first author heard one developer say to
another during a code review; explaining that TestFirst should be applied to every sort of
code change, they went on, “Please be as careful with your SQL code as you are with your C#
code!” (SQL code is used for accessing databases, whil C# code is used for implementing
the function of the system).

For a business based largely around very analytical software developers, spending most
of their days writing code, they rely on talking to each other. This is especially true around
the issues of quality and time.

An Even Richer Rich Picture

In an extensive open-plan environment dominated by large monitors and powerful
desktops, there was very little paper around.

Our rich picture was on a large piece of paper, about A2- size. Because she wanted to
keep it in sight and in mind, the first author left it laid out on the empty desk next to hers,
for several weeks.

This provoked developers who came over to her desk to talk to her, and developers who
were just passing, to comment on it and ask questions about it. It gave her unexpected
opportunities to discuss what it represented and meant with the developers. Our
understanding and interpretation of their work was made obvious to them, in a way that
written text in a report, that they probably wouldn’t read, would not have. It gave them a
way to directly engage with and contribute to our fieldwork. Further, it gave us a unique way
to validate our understanding of their situation with them, while the first author was there
full-time.

This excerpt is the same section of the rich picture as that in the previous slide, but it is
from several weeks later. It is a richer picture, in that it has had a lot of extra things added to
it: more quotes, more interconnecting lines, more processes and text. Notably, the
interconnections with design, side effects and product quality.

“It’s the throw the specs with the pizza under the door approach”, commenting on the
concerns of the relationship between product managers and developers in what happens
between the HLD (for which the product managers are primarily responsible) and the LLD
(for which the developers are primarily responsible).

 “The devs don’t understand enough about the customer/user/real-life business!”,

relating to the concerns of the product managers.

Software Quality and Its Entanglements – Prior & Leaney 168

Code quality is now embellished, and the associated processes are acknowledged by
comments such as, “Having these policies makes me write better code”.

On Quality Iterations, “It’s just not enough to count the number of iterations … we need to
know why it is happening.” How many iterations (loops, occurrences) it takes to improve
quality to an acceptable standard is not useful without understanding why it is happening.
The quality iteration count is fast, but not necessarily useful to improving quality.

Over the next month or so, as we kept adding to the rich picture, our ethnographic
understanding of the situation and the developers’ software quality practices continued to
deepen.

The Complete Rich Picture

Below is the whole rich picture as it was at the end of the fieldwork period.
The phenomena of Software Quality, Productivity, People, Processes and Practices that

emerged from the fieldwork are highlighted. as well as the overarching layers of
communications, education, and Time.

What emerged was the components and people of the company demonstrably in rich,
dynamic relationships.

Figure 3. Even richer picture excerpt.

2020 EPIC Proceedings 169

Figure 4. Complete rich picture.

TOWARDS ENTANGLEMENTS

A number of patterns, themes and connections emerged from analysis of the rich

picture and the thick data that it represented. We would be writing about productivity and
find that we were also talking about quality, and also people and time. It seemed impossible
to talk about these elements separately. Looking for terms and ideas to express the strong
bonds represented in the rich picture led to discovering previous work on entanglement, in
particular Scott & Orlikowski (2014) and their use of Barad’s (2007) notion of entanglement.

Scott and Orlikowski (2014)'s approach, which is based on Barad's agential realism
theory of knowledge and being, gave a legitimacy to, as well as a way of articulating, the
entanglements that emerged from our study. Scott and Orlikowski (2014) define
entanglement as ``the inseparability of meaning and matter.'' These authors cite Barad
(2007, p.ix), who explains,

``To be entangled is not simply to be intertwined with another, as in the joining of
separate entities, but to lack an independent, self-contained existence… '' (our emphasis).

Barad (2007, p.ix) continues, "... Existence is not an individual affair. Individuals do not
pre-exist their interactions; rather, individuals emerge through and as part of their entangled
intra-relating.'' These individuals are not necessarily humans, but include non-humans,
objects or phenomena involved in the situation we are trying to understand. Each of these is

Software Quality and Its Entanglements – Prior & Leaney170

not a discrete factor in reality, an independent object with “independently determinate
boundaries and properties” (Barad 2007, p.33).

Barad (2007) describes these things as “phenomena” and sees them as relational, with
their agency residing in that relating, rather than agency as something that resides in an
individual thing. This is similar to Suchman (2007)’s understanding of agency. Barad goes
further: when defining phenomena, firstly, in referring to phenomena as agencies, and
secondly, and most significantly, that their existence and properties arise through their intra-
acting with one another.

Intra-action differs from the notion of ‘interaction’. ‘Interaction’ assumes that there are
independent objects, or phenomena, each with their own agency, that precede or pre-exist
their interaction or relating. Intra-action, however, is the mutual constitution of entangled
phenomena: these phenomena come into being through their intra-actions.

Barad (2007) considers phenomena and their continual intra-actions to be constitutive of
reality. Entanglements are dynamic, they are already made, as well as always in the making
(Suchman 2012).

We realized that entanglement meant, in the first instance, that any attempt to
understand the company in terms less than the whole rich picture, its elements and
interactions, would lead to the understanding of a different company. And, in fact, a
fictitious company.

A shift in our interpretation and representation of the local software development
endeavor occurred in the move from initially exploring software development as a human
endeavor, and as situated action (Suchman 2007), to a post-human perspective of
entanglements in the local context. In the latter, humans and non-humans, their intra-
actions and agencies, are seen as being equal participants, active in the ongoing, dynamic
entanglements from which phenomena such as quality, productivity and practice come into
recognizable being.

Viewing local software development as relating phenomena, and exploring the nuances
of their intra-actions, makes entanglement a meaningful way of discussing the reality of
software development practice. The entanglements of people's actions with phenomena
such as quality, productivity and time, is a characteristic of the perpetually generated context
in which the design and development of complex software is accomplished.

“Slower today, faster tomorrow”

“Slower today, faster tomorrow” is one of the company’s software development
mantras. Experienced developers talk frequently about what this mantra means: if
developers spend time and effort on assuring quality in their original code, then all of the
developers will be more productive in the longer term. In other words, they will spend most
of their time adding new functionality to the codebase, rather than spending time fixing
defects that have been discovered in previously released (deployed) code.

“So previously I would quite often talk about quality in the context of the speed
quality trade-off… Because having quality gives you speed. So slower today and
faster forever. So I’ve really toned back on my attempt to be fast and I’ve really just
thought about how we can have quality instead. Because I don’t even need to think
about speed, I just get it automatically. So, for me quality is the ability for what we
do now to have long lasting positive outcomes on the goals that we’re trying to

2020 EPIC Proceedings 171

achieve. So if we produce something that may take a little bit of time but in the
long run saves us a lot of time then that was the right thing to do that, it’s good
quality.”

Code that is not written well, that does not adhere to the company’s coding standards,
for example, is difficult to maintain and change later, and this in turn may lead to further
defects and decreased productivity:

“If you don’t write code in a good way, developers will spend more time reading
and changing it, which will result in more waste at the end. It’s all about our future
speed.”
“Particularly, I’m a software developer, so the quality for developers means we
should write very elegant code. So, probably, for example, if we write, if I write,
very dodgy code, there’s a high possibility that my code would break something of
the software or [worse] result in an unhappy client. Then they will lodge another
incident and more repetitive work. So yeah, that quality [coughs] means, for me, is
more work, more time—yeah, less productivity as well.”

Increased defects in the code means that at some stage, the software will not work as
expected, or worse, will crash while the customer is using it. Developer time will then need
to be spent on fixing those defects, rather than spending that time on developing – and
delivering – new features in the software.

“I mean, when we say we should deliver good qualities, there’s always another thing
called time frame. To deliver the good quality software, definitely we need more
time. But normally people at [the company] got overloaded easily because if we got
too much work, unfortunately we got too much defect as well.”

The above quote highlights the tension between a stated value of spending time on
quality, and the experience of time being scarce. However, spending substantial time taking
action to improve the quality of the code is potentially detrimental to throughput and thus
productivity.

 After a developer at a daily team stand-up meeting said, in an ironic tone,

 “Slower today, faster tomorrow!”

one comedian from the Productivity team responded, “but tomorrow never comes!”

They were reminding the team that one can spend forever getting something closer to
perfect, or ‘high quality’, but, taken to the extreme, the work will never be delivered. This
concern about not delivering ‘enough’ is not often explicitly articulated, but it is alluded to
frequently and underlies much of the developers’ everyday practices, behavior and decisions.

The issues of software quality and productivity in practice are about people’s practices in
time and over time. Decisions that the developers continually have to make include: what
should we spend time on? how much time should we spend on what kind of work? should
we spend more time on this work for better quality? if our throughput is higher in the short-
term are we more productive in the long-term? how and where are people spending their
time? and so on.

Software Quality and Its Entanglements – Prior & Leaney 172

“Because I find a lot of the time when something goes wrong it's because - not that
someone just did something silly, it's often that we didn't consider something. That
if we thought about it for maybe half an hour longer, we could have.”

This apparently simple, short phrase “Slower today, faster tomorrow!”, frequently quoted
by developers in discussions about quality, is really about the ongoing entanglements of the
phenomena of quality, productivity, people’s (developers’) practices and time. This is
illustrated by experienced developers’ quotes above from their discussions about this mantra
and what ‘quality’ means at the company. Moreover, it signifies how these phenomena are
mutually constitutive: dynamically forming and shaping each other through their continual
intra-actions.

Developers Becoming

A “fully-fledged developer” a (human) developer comes into being through ongoing

intra-actions with quality, productivity and technical development principles, processes and
tools, and with the other developers, over a considerable time. These continual intra-actions
generate entanglements within the local development environment and over months, the
novice becomes a developer, and over years, they become a fluent, proficient developer. But
they are not simply skillful developers; these developers are experts in the entanglements that
are particular to the local environment in the participant company.

Producing high-quality enterprise software requires fluent, expert software developers,
who have excellent programming skills, as well as the high-level technical skills to work with
the automated testing system, sophisticated technology stack and other technological
infrastructure used to continually build a complex, but robust, software product such as
Connect. A reasonable amount of domain understanding of the logistics industry is also
necessary in order to be able to work as an effective developer in this company.

The production of high-quality software requires new hires (developers) to gain both
technical competence and fluency in the local codebase; both of these take time. The
problem is not simply a concern that is regularly raised by more experienced developers, i.e.,
that new hires lack the necessary technical skills and expertise to be productive and produce
quality code, i.e., code that is maintainable, efficient and thoroughly tested. It is also about
the continual trade-off for senior, experienced developers between mentoring, or coaching,
of new developers, which takes considerable time, and getting their own development work
done in a timely manner:

“All the senior devs. are already busy doing what they are working on at the
moment. It's kind of like, they've got their work and they have to teach other
people at the same time. So the priority for senior devs. is, of course, their current
work.”

“Yeah, and it takes a lot of time as well. Sometimes my manager asks me to be a
mentor to the new developers, but I'm already overloaded and then this new
people come and ask me, ‘How can I do this? How can I do that?’. Sometimes it's
really annoying. If I didn't have enough work to do, I'd be more than happy to help
them, but the reality is not like that.”

2020 EPIC Proceedings 173

These quotes from senior developers in two different teams make the point that the
senior developers’ most important focus is their ‘current’ , i.e.,technical work, their design
and development work, and this is what they ‘should’ make their priority, in order to be
productive. Mentoring newer developers is an extra, ‘really annoying’ impost on their time
and effort. They do not view mentoring – getting newer developers au fait with the
company’s development systems, processes and tools – as being as valuable a use of their
time and expertise as producing software themselves.

The next quote from a technical team lead refers in part to the assumption that it takes a
certain amount of time for any developer to become expert enough to both produce quality
code themselves, but also to make assessment of the level of quality of another developer’s
code:

“A typical situation, when some developer jumps from junior level to let's say
senior level his complexity of work rises, it's natural that number of defects can
grow as well but it's kind of natural at first… but I'm going to introduce it and
what I'm going to do, I'm going to assign that task to junior developer capability.
They need to learn how to do code review because it's - a typical situation… I'm
not ready to give them proper final code reviews but at least I think if I give them
these intermediate code reviews maybe they can improve their code in quality as
well. Because typically it’s, I don't know, sometimes it's as long as two years for a
developer to gain my trust, so I progress the developer to a capability which allows
code reviews.”

The aim for a developer’s performance is that they become fluent in producing complex
code in a collaborative development environment. The more fluent a developer is, the faster
they will produce code. And, crucially, they will not only code faster (than a developer who
is not as fluent), the code that they will produce will be a higher quality code, without
requiring as much iteration or revision. They are therefore more productive as individual
developers. Further, they will be able to do code reviews of other developers’ code more
effectively, which will improve that code’s quality. And, if this developer is mentoring a new
developer, the less experienced developer will be coached to write higher quality code. So, a
secondary effect that is hoped for is that the reviewed developer’s approach will change, or
at least shift, so that the code they write in future improves also. This impacts productivity
in two ways: firstly, it ensures that the particular piece of code in question that is checked in
to the code base and eventually released to customers is higher quality, and secondly, fluency
of the newer developer improves which, in turn, will greatly improve the code that they
produce in daily practice. This will then reduce the need for iterative code reviews at the
development end and/or defect fixing at the production end.

Insights from entanglements

The entanglements that are central to our understanding of the local software

development situation are those arising from the intra-actions of quality, productivity,
people, practices and time. They are not the only ones in the local situation, of course, but
these are the ones that emerged most persuasively from our fieldwork and analysis. A
researcher’s observations in any situation are always limited in various ways, and we can
therefore only ever have partial knowledge of it (Haraway 2001).

Software Quality and Its Entanglements – Prior & Leaney174

Perceived software quality and productivity levels unfold as a result of the ongoing intra-
actions over time of the developers, their everyday practices, company software quality and
productivity principles and processes, development infrastructure and other undefined (in
this fieldwork and study) phenomena. Ultimately, levels of quality and productivity in the
company depend entirely on the developers' everyday actions that make up their practices. In
the end, it is only what the developers do – the actions they perform day-after-day, over long
periods of time – that matters. It is the intra-actions of practices (actions), quality,
productivity and time as developers continually attempt to balance the demands of quality
and productivity, and the efforts given to achieve one or the other, or both, over time that
give rise to ongoing entanglements. These entanglements mutually and simultaneously form
these phenomena. The phenomena that we identify as practices, quality and productivity are
becoming; they continually come into recognizable being through their dynamic
entanglements with each other, time and the developers themselves.

These entanglements give us some insight into the subtle complexities of this kind of
software development work and the expertise and technical fluency required to carry it out
effectively. They also give us a way to describe the continually generated context in which
the collaborative design and development of complex software is accomplished.

Somewhat ironically, taking a human-centric stance led us to conclude that quality and
productivity in software development requires more than simply focusing on the humans
(software developers, in this case). Applying Scott and Orlikowski (2014)’s Baradian
approach to reality as ongoing intra-actions of phenomena gave a legitimacy to, and a way of
articulating, the dynamic entanglements that emerged from our study. Recognition of these
entanglements shifted our perspective from a humanist one, focused on collaborative
software development as essentially a human endeavor, to a post-human appreciation of the
setting’s complexities and the mutual constitution of the phenomena central to our research
focus, i.e., the developers and their practices, software quality, productivity and time.

LESSONS LEARNT AND ORGANIZATIONAL IMPACT

The concept of entanglement provides an explanation of the local situation as dynamic,
multiple and emergent. Together with the rich picture, it

• presents the nuances of the developers’ everyday work practices as they are
constituted within the local situation; and

• builds trust with participants, as they see an attempt to capture and express the
complexities of software development and their lived experience of it.

This research had a significant impact on the organization and our continuing
relationship with it and the developers.

By making our ethnographic work visible through the rich picture, and encouraging
participant developers to make suggestions or additions, there is a sense in which they jointly
own this work.

The rich picture continues to evolve, and is now explicitly owned and edited by the
organization, and used to explore software quality concerns, with our oversight.

2020 EPIC Proceedings 175

The ethnographic insights that we shared with the participants helped us to secure
support for, and engagement with, subsequent experiments in mentoring and measurement.
The aim is to help them develop practices that will sustain, even increase, software quality, in
the face of particular challenges. These are the continual growth in the size, complexity and
customer reach of the Connect codebase, and the ongoing hiring of new developers
unfamiliar with the organization’s quality principles and practices. The work will be
characterized by participatory methods and deep collaboration with the developers,
enhancing the potential future organizational impacts.

Julia Prior is an Associate Professor in software engineering at UTS. She is a software
developer, an ethnographer and a teacher. Her research focuses on understanding the lived
experience of professionals developing large, complex software systems and the mechanisms
that enable effective collaboration and quality assurance. You can contact her on
<julia.prior@uts.edu.au>

John Leaney is an Adjunct Professor in software engineering at UTS. Over the last fifteen
years, he has developed expertise in combining qualitative techniques, such as action
research and ethnography, with quantitative approaches to provide effective methods for
understanding and designing architecture-focussed, complex software systems.

NOTES

Acknowledgements. The authors thank the participant company and its software developers – we
greatly appreciate their enthusiasm and generosity in working with us. We thank the Faculty of
Engineering and Information Technology at UTS for granting the first author a six-month
Professional Experience Program (sabbatical) that enabled us to carry out this work. And we are
most grateful to Scott Matter, our EPIC curator, who was very generous with his time and expertise in
providing feedback and advice that substantially improved this article.

REFERENCES
Barad, K. 2007. Meeting the universe halfway: Quantum physics and the entanglement of matter and
meaning. Duke University Press.

Checkland, Peter. 2000. “Soft systems methodology: a thirty year retrospective.” Systems Research
and Behavioral Science: 17, S11– S58.

Haraway, Donna. 1988. “Situated Knowledges: The Science Question in Feminism and the Privilege
of Partial Perspective.” Feminist Studies, 14(3), 575-599.

Mistrik, Ivan; Richard M. Soley; Nour Ali; John Grundy; Bedir Tekinerdogan, eds. 2016. Software
quality assurance: in large scale and complex software-intensive systems. Morgan Kaufmann.

Prior, Julia. 2011. Everyday practices of agile software developers. PhD dissertation, University of
Technology Sydney.

Scott, S and Orlikowski, W. 2014. “Entanglements in practice: Performing anonymity through social
media.” MIS Quarterly, 38, 873–893.

Software Quality and Its Entanglements – Prior & Leaney176

Suchman, Lucy. 2007. “Human-machine reconfigurations: Plans and situated actions.” Cambridge
University Press.

Suchman, Lucy. 2012. "Configuration." Inventive methods, pp. 62-74. Routledge.

