deep learning

Scale and the Gaze of a Machine

RICHARD BECKWITH Intel Labs JOHN W. SHERRY Intel Labs Scale suffuses the work we do and, recently, has us considering an aspect of scale best suited to those with ethnographic training. We've been asked to help with scaling up one of the latest blockbusters in high tech – deep learning. Advances in deep learning have enabled technology to be programmed to not only see who we are by using facial ID systems and hear what we say by using natural language systems; machines are now even programmed to recognize what we do with vision-based activity recognition. However, machines often define the objects of their gaze at the wrong scale. Rather than “look for” people or objects, with deep learning, machines typically look for patterns at the smallest scale possible. In multiple projects, we've found that insights from anthropology are needed to inform both the scale and uses of these systems. Keywords Deep Learning, Human Scale, Ethnographic Insights Article citation: 2020 EPIC Proceedings...

Who and What Drives Algorithm Development: Ethnographic Study of AI Start-up Organizational Formation

RODNEY SAPPINGTON Founder, CEO, Acesio Inc. LAIMA SERKSNYTE Head of Behavioral and Organizational Research, Acesio Inc. The focus of this paper is to investigate deep learning algorithm development in an early stage start-up in which edges of knowledge formation and organizational formation were unsettled and contested. We use a debate by anthropologists Clifford Geertz and Claude Levi-Strauss to examine these contested computational forms of knowledge through a contemporary lens. We set out to explore these epistemological edges as they shift over time and as they have real practical implications in how expertise and people are valued as useful or non-useful, integrated or rejected by the practice of deep learning algorithm R&D. We discuss the nuances of epistemic silences and acknowledgments of domain knowledge and universalizing machine learning knowledge in an organization that was rapidly attempting to develop algorithms for diagnostic insights. We conclude with reflections on how an AI-Inflected Ethnography perspective...

The Stakes of Uncertainty: Developing and Integrating Machine Learning in Clinical Care

MADELEINE CLARE ELISH Data & Society Research Institute The wide-spread deployment of machine learning tools within healthcare is on the horizon. However, the hype around “AI” tends to divert attention toward the spectacular, and away from the more mundane and ground-level aspects of new technologies that shape technological adoption and integration. This paper examines the development of a machine learning-driven sepsis risk detection tool in a hospital Emergency Department in order to interrogate the contingent and deeply contextual ways in which AI technologies are likely be adopted in healthcare. In particular, the paper bring into focus the epistemological implications of introducing a machine learning-driven tool into a clinical setting by analyzing shifting categories of trust, evidence, and authority. The paper further explores the conditions of certainty in the disciplinary contexts of data science and ethnography, and offers a potential reframing of the work of doing data science and machine learning as “computational...